

2022

Description of the libfmrt
library (v.1.0)

ROBERTO MAMELI

Index
Introduction ... 2

Main libfmrt characteristics ... 3

How to compile the libfmrt library .. 4

How to use the libfmrt library into your C/C++ code .. 5

libfmrt API Description .. 6

libfmrt Types and Constants .. 7

libfmrt Detailed Library Calls Description .. 10

fmrtDefineTable() .. 10

fmrtClearTable() .. 11

fmrtDefineKey() ... 12

fmrtDefineFields() .. 13

fmrtRead() ... 15

fmrtCreate() ... 16

fmrtModify() .. 17

fmrtCreateModify() ... 19

fmrtDelete() ... 21

fmrtImportTableCsv() .. 22

fmrtExportTableCsv() ... 24

fmrtExportRangeCsv() ... 25

fmrtCountEntries()... 27

fmrtGetMemoryFootPrint() ... 28

fmrtDefineTimeFormat() ... 29

fmrtEncodeTimeStamp() ... 30

fmrtDecodeTimeStamp() ... 31

Examples .. 32

DictionaryWords .. 33

CountWordsOccurrence .. 34

Televoting .. 36

BarCodeCache ... 39

Known Issues and Future Improvements .. 41

References ... 42

Introduction
libfmrt is a library written in C language, which can be statically or dynamically linked to any C/C++
source code, providing Fast handling of Memory Resident Tables (hence the meaning of the
acronym fmrt). It offers the ability to manage huge amount of data stored into in-memory tables,
giving high efficiency and O(log2N) complexity. To achieve this requirement, in-memory data are
stored into tables organized as AVL trees (see ref. 1 in chapter References).

libfmrt is not a Data Base. As such, it does not fit tasks that requires some typical DB properties,
such as persistence or capability to perform SQL queries or to join tables. Rather, it is suitable for
tasks that require optimized handling of volatile data, such as implementation of a fast in-memory
cache or handling of great amount of temporary data.

Main libfmrt characteristics
The libfmrt library provides the following characteristics:

- In-memory handling of up to 32 tables, where each table is characterized by:
o A primary key and a variable number of attributes (from 0 to 16);
o Key and attributes may be either:

▪ 32-bit unsigned integers (in the interval between 0 and 232-1);
▪ 32-bit signed integers (in the interval between -231 and 231-1);
▪ double precision floating point numbers;
▪ characters;
▪ strings (max length 255 characters);
▪ timestamps

o A single table can contain up to 226 elements (i.e. slightly more than 67 millions,
exactly 67.108.864)

- All tables are handled in-memory:

o Previous limits are theoretical, actual limits depend upon memory availability in the
system

o The library uses memory from the heap space available in the system
o In most systems, there are generally no restrictions on the heap size, other than the

physical memory size

- High efficiency:
o Being stored in memory, the tables benefit from available high speed and random-

access capabilities
o Moreover, all tables are stored as AVL trees (see ref. 1 in chapter References)
o Worst case complexity of all read and write operations is O(log2N)

- Library is thread-safe

- Available methods are listed below (see libfmrt API Description for detailed explanation):

o fmrtDefineTable()
o fmrtClearTable()
o fmrtDefineKey()
o fmrtDefineFields()
o fmrtRead()
o fmrtCreate()
o fmrtModify()
o fmrtCreateModify()
o fmrtDelete()
o fmrtImportTableCsv()
o fmrtExportTableCsv()
o fmrtExportRangeCsv()
o fmrtCountEntries()
o fmrtGetMemoryFootPrint()
o fmrtDefineTimeFormat()
o fmrtEncodeTimeStamp()
o fmrtDecodeTimeStamp()

How to compile the libfmrt library
The library has been developed in Linux environment (RedHat, CentOS), but since it relies on
POSIX standards and gcc compiler and development tooIkit, it can be easily ported to most UNIX
based operating systems (just recompiling it). It can be compiled without problems with glibc 2.12
or above.

Be aware that this library does not come with an automatically generated makefile (cmake or
similar). It contains a manually written makefile, composed by a few lines, that works on RedHat
based operating systems (RedHat, Centos, etc.), and that can be easily adapted to other Linux
based operating systems.

After having downloaded the library, extract the source files into a directory arbitrarily chosen in
your Linux Box:

tar -zxvf libfmrt1.0.tar.gz
cd libfmrt1.0

(this example assumes libfmrt1.0, however it can be applied also to other versions by simply
referring to the correct one).

After that, type the following commands:

make all
make install

The first compiles the library and produces in the libfmrt1.0 directory both the static and the
shared libraries (respectively libfmrt.a and libfmrt.so.1.0).

The second installs the libraries into the destination folders. Specifically, the header file fmrt.h is
copied into /usr/local/include (this path is the one usually used in RedHat based operating
systems, it may differ in other Linux distributions).

Static library libfmrt.a is copied into the ../lib folder. Dynamic libraries, instead, are copied to
/usr/local/lib path (usually used in RedHat based operating systems, it may differ in other Linux
distributions).

Be aware that to use shared libraries, this path shall be either configured in /etc/ld.so.conf or in
environment variable $LD_LIBRARY_PATH. The first time you install the libraries, a further
command might be needed to configure dynamic linker run-time bindings:

ldconfig

If you apply changes to the library source code and you want to recompile it from scratch, you can
clean up all executables by typing:

make clean

How to use the libfmrt library into your C/C++ code
Let’s assume that libraries are correctly compiled and installed (see previous section).

To use library functions within C/C++ source code, the following shall be done:

- include the fmrt.h header file

#include "fmrt.h"

- link the executable by including either the shared or the static library libfmrt

To compile a generic example file (let's say example.c), simply type:

gcc -g -c -O2 -Wall -v –I/usr/local/include example.c
gcc -g -o example example.c -lfmrt

for shared library linking or:

gcc -static example.c -I/usr/local/include -L. -lfmrt -o example

for static linking. In the previous command -L . means that the libfmrt.a file is available in the
same directory of the source code example.c; if this is not the case just replace the dot after L with
the path to the library file.

libfmrt API Description
The current libfmrt library (v.1.0.0) provides 17 methods:

- fmrtDefineTable()
- fmrtClearTable()
- fmrtDefineKey()
- fmrtDefineFields()
- fmrtRead()
- fmrtCreate()
- fmrtModify()
- fmrtCreateModify()
- fmrtDelete()
- fmrtImportTableCsv()
- fmrtExportTableCsv()
- fmrtExportRangeCsv()
- fmrtCountEntries()
- fmrtGetMemoryFootPrint()
- fmrtEncodeTimeStamp()
- fmrtDecodeTimeStamp()
- fmrtDefineTimeFormat()

All library functions listed above use a common set of constants and type definitions, which are
described immediately below, while the following sections provide a detailed description of all
library calls.

libfmrt Types and Constants
The following custom (simple) types are defined by the library:

- fmrtId
8-bit unsigned integer in the interval 0-255, it is used by libfmrt methods as identifier (e.g.
table identifier)

- fmrtType

8-bit unsigned integer in the interval 0-255, it denotes a data type for key and fields of in-
memory tables;

- fmrtLen

8-bit unsigned integer in the interval 0-255, it is used to represent field lengths;

- fmrtResult
8-bit unsigned integer in the interval 0-255, it provides the result code of library
operations;

- fmrtParamMask

16-bit unsigned integer in the interval 0-65535, it is used as a bitmask by fmrtModify() and
fmrtCreateModify() methods;

- fmrtIndex

32-bit unsigned integer used to express the number of elements in a table by
fmrtDefineTable() and fmrtCountEntries() methods.

The fmrtType type is used to denote types for keys and fields. It can assume the following values:

- FMRTINT (0)
A key/field of this type is constituted by a 32-bit Unsigned Integer (between 0 and 232-1)

- FMRTSIGNED (1)

This type represents a 32-bit Signed Integer (between -231 and 231-1)

- FMRTDOUBLE (2)
Key/fields defined as FMRTDOUBLE represent double precision floating point numbers

- FMRTCHAR (3)

A key/field of this type is constituted by an 8-bit character (ASCII code)

- FMRTSTRING (4)
This represents a null terminated string, with a maximum length of 255 characters

- FMRTTIMESTAMP (5)

A key/field of this type denotes a Time Stamp (i.e. Unix time_t type)

Variables defined as fmrtResult type can assume one of the following values:

- FMRTOK (0)

The operation has been completed successfully

- FMRTKO (1)
The operation failed due to an unspecified error

- FMRTIDALREADYEXISTS (2)

The Id in the request is already in use

- FMRTIDNOTFOUND (3)
The Id in the request does not exist

- FMRTMAXTABLEREACHED (4)

The maximum number of tables has been reached

- FMRTMAXFIELDSINVALID (5)
The number of fields is outside the allowed range

- FMRTREDEFPROHIBITED (6)

Key/Field Redefinition is not allowed

- FMRTDUPLICATEKEY (7)
The specified Key already exists in Create operation

- FMRTNOTEMPTY (8)

The Table contains at least one element

- FMRTNOTFOUND (9)
Searched Element has not been found

- FMRTFIELDTOOLONG (10)

String field exceeds max allowed length (255 characters)

- FMRTOUTOFMEMORY (11)
No more space left for new elements

The following constants are used in fmrtExportTableCSV() library call to specify the desired

ordering of the exported file:

- FMRTASCENDING (0)

The CSV file shall be exported in ascending order with respect to the key

- FMRTDESCENDING (1)

The CSV file shall be exported in descending order with respect to the key

- FMRTOPTIMIZED (2)

The CSV file shall be exported using an order that minimizes the time needed for data

reload

Finally, there is a constant that might be obtained as return value of fmrtCountEntries():

- FMRTNULLPTR
It is used by variables defined as fmrtIndex to denote an invalid index.

libfmrt Detailed Library Calls Description

fmrtDefineTable()

Function Prototype
fmrtResult fmrtDefineTable (fmrtId tableId, char* tableName, fmrtIndex
tableNumElem)

Parameters
- tableId (type fmrtId)

It’s the unique identifier of the table between 0 and 255; the library does not allow the
definition of two tables with the same identifier.

- tableName (type char *)
Null terminated string (up to 32 characters) which identifies the table name. In case of
length exceeding this limit, the name will be truncated.

- tableNumElem (type fmrtIndex)
Maximum number of elements for the table, it is a table attribute fixed at table definition,
and cannot be changed later. It shall be included between 1 and 226.

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
Table successfully defined

- FMRTKO
Result obtained when the number of elements is outside the allowed interval

- FMRTIDALREADYEXISTS
The specified tableId is already in use by another table

- FMRTMAXTABLEREACHED
Result obtained when more than 32 tables are defined

Description
This library call is used to define a new table. This shall necessarily be the first library function
invoked by the caller (a table cannot be used unless it is defined first). The library supports the
definition of up to 32 tables.

A table cannot be redefined unless it is cleared first through fmrtClearTable().

Please observe that internal memory for the table is not reserved at this stage, rather it is
allocated upon first element insertion.

fmrtClearTable()

Function Prototype
fmrtResult fmrtClearTable (fmrtId tableId)

Parameters
- tableId (type fmrtId)

It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
Table successfully deleted

- FMRTKO
Obtained if this function is invoked as first library call

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

Description
This function is used to delete a table previously defined through fmrtDefineTable(). If the
memory for the table has already been allocated, it also deallocates this space: this happens only
if at least one element has been inserted in the table, otherwise the call simply deletes table
definition.

A tableId cannot be re-used unless fmrtClearTable() is invoked first.

This operation is destructive and cannot be recovered. If the table is not empty when the function
is invoked, all its content is irreversibly lost.

fmrtDefineKey()

Function Prototype
fmrtResult fmrtDefineKey (fmrtId tableId, char* keyName, fmrtType keyType,
fmrtLen keyLen)

Parameters
- tableId (type fmrtId)

It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- keyName (type char *)
Descriptive name of the key (up to 16 characters allowed, in case of length exceeding this
limit the name will be truncated).

- keyType (type fmrtType)
Identifies key type. Allowed values are defined in section libfmrt Types and Constants.

- keyLen (type fmrtLen)
Meaningful only in case of FMRTSTRING keyType when it represents the maximum string
length for the key value. Allowed values are in the interval 1-255. For other key types, the
parameter is meaningless.

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
Key definition successful

- FMRTKO
Result obtained either when this is the first library call invoked by the caller or when
keyType parameter is not valid

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTREDEFPROHIBITED
The key has already been defined and cannot be redefined

- FMRTFIELDTOOLONG
In case of FMRTSTRING keyType, the keyLen parameter is outside the allowed interval

Description
This call is used to define the key name, type (and also key length for string key type) for a
previously defined Table.

This call can be invoked only once after fmrtDefineTable() and before invoking fmrtDefineFields().
Multiple invocations are forbidden.

fmrtDefineFields()

Function Prototype
fmrtResult fmrtDefineFields (fmrtId tableId, uint8_t numFields, ...)

Parameters
This call has a variable number of arguments. The first two parameters (mandatory) are
respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- numfields (type uint8_t)
Number of fields for each table row, in the interval 1-16 (excluding the key, which is
defined apart through fmrtDefineKey()).

The parameters after the two mentioned above are used to specify name, type (and length for
string field type) for each field of the table. Specifically, for each field, there shall be:

- fieldName (type char *)
Descriptive name of the field (up to 16 characters allowed, in case of length exceeding this
limit the name will be truncated).

- fieldType (type fmrtType)
Identifies field type. Allowed values are defined in section libfmrt Types and Constants.

- fieldLen (type fmrtLen)
This shall be inserted only if field type = FMRTSTRING. Please observe that the function
behaviour is unpredictable in case parameter is inserted for other field types (e.g. FMRTINT
or FMRTCHAR). In case of FMRTSTRING fieldType it represents the maximum string length
for the field value. Allowed values are in the interval 1-255.

The number and type of parameters specified in the library call shall match the number of fields
defined by the numfields parameter, otherwise the function behaviour is unpredictable.

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
Field definition successful

- FMRTKO
Result obtained either when this is the first library call invoked by the caller or when one of
the fieldType parameters is not valid

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTREDEFPROHIBITED
Fields have already been defined and cannot be redefined

- FMRTMAXFIELDSINVALID
The specified number of fields is outside the allowed range (1-16)

- FMRTFIELDTOOLONG
In case of FMRTSTRING keyType, the keyLen parameter is outside the allowed interval

Description
This call is used to define the name, type (and also length for string type) of the fields for a
previously defined Table. It is not mandatory (i.e. a Table may not contain any field, but just the
key).

This call can be invoked only once after fmrtDefineKey() and before invoking fmrtCreate().
Multiple invocations are forbidden.

fmrtRead()

Function Prototype
fmrtResult fmrtRead (fmrtId tableId, ...)

Parameters
This call has a variable number of arguments. The first two parameters (mandatory) are
respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- key (type previously specified through fmrtDefineKey())
Contains the key value to be searched into the table. It shall be of the same type defined by
the fmrtDefineKey() call. The library behaviour is undefined if this constraint is not
satisfied. In case of string key, the length will be truncated to the max length specified at
key definition through fmrtDefineKey()).

After the two mandatory parameters mentioned above, there is a list of pointer parameters that
are filled with values read from the table entry (if present). Parameters are ordered according to
the same order used in definition (i.e. in fmrtDefineFields() library call). Be aware that parameters
number and types shall be correct, otherwise the call may cause run-time errors.

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The entry has been found and corresponding parameters extracted. The fields retrieved
from the table are stored in pointers passed as arguments as already explained above.

- FMRTNOTFOUND
The entry with the given key is not present in the table

- FMRTKO
Result obtained when this is the first library call invoked by the caller

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

Description
This library call is used to read an entry from the table. It requires as input parameters the tableId
and the searched key. If the key is present, the remaining parameters are filled with values
extracted from the table. Otherwise, a proper error code is returned.

fmrtCreate()

Function Prototype
fmrtResult fmrtCreate (fmrtId tableId, ...)

Parameters
This call has a variable number of arguments. The first two parameters (mandatory) are
respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- key (type previously specified through fmrtDefineKey())
Contains the key value of the new entry which is being inserted into the table. It shall be of
the same type defined by the fmrtDefineKey() call. The library behaviour is undefined if
this constraint is not satisfied. In case of string key, the length will be truncated to the max
length specified at key definition through fmrtDefineKey()).

After the two mandatory parameters mentioned above, there is a list of arguments that are used
to fill the fields of the new entry that is going to be created. Parameters are ordered according to
the same order used in definition (i.e. in fmrtDefineFields() library call). Be aware that parameters
number and types shall be correct, otherwise the call may cause run-time errors. In case of string
parameters, the length will be truncated to the max length specified at field definition through
fmrtDefineFields().

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The entry has been correctly inserted into the table.

- FMRTDUPLICATEKEY
The entry has not been inserted since the given key is already present in the table (libfmrt
requires uniqueness of the key)

- FMRTKO
Result obtained when this is the first library call invoked by the caller

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTOUTOFMEMORY
The entry has not been inserted since the table is full.

Description
This library call is used to insert a new entry into the table whose identifier is specified as first
parameter (tableId). Since libfmrt mandates key uniqueness, the operation is allowed only if an
entry with the same key is not already present, and if there is still available space in the table,
otherwise, a proper error code is returned.

fmrtModify()

Function Prototype
fmrtResult fmrtModify (fmrtId tableId, fmrtParamMask paramMask, ...)

Parameters
This call has a variable number of arguments. The first three parameters (mandatory) are
respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- paramMask (type fmrtParamMask)
It is a bitwise mask that is used to identify the parameters to be changed. See Description
below for further details about parameter’s usage and meaning.

- key (type previously specified through fmrtDefineKey())
Contains the key value of the entry which shall be modified. It shall be of the same type
defined by the fmrtDefineKey() call. The library behaviour is undefined if this constraint is
not satisfied. In case of string key, the length will be truncated to the max length specified
at key definition through fmrtDefineKey()).

After those mandatory parameters, there is a list of arguments that are used to update the fields
of the entry that is going to be modified. Parameters are ordered according to the same order
used in definition (i.e. in fmrtDefineFields() library call). Be aware that parameters number and
types shall be correct, otherwise the call may cause run-time errors.

All fields shall be included in the call, but the only ones that will be updated are those pointed by
the paramMask, as explained below. In case of string parameters, the length will be truncated to
the max length specified at field definition through fmrtDefineFields().

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The entry has been correctly updated into the table

- FMRTNOTFOUND
The entry with the given key is not present in the table

- FMRTKO
Result obtained when this is the first library call invoked by the caller

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

Description
This library call is used to update an existing entry into the table whose identifier is specified as
first parameter (tableId). The call does not insert a new entry in case it is not already present (if
so, a proper error is obtained).

All fields shall be specified into the call, paying attention that number and type of the
corresponding parameters shall fit the definition given through fmrtDefineFields(), in order to
avoid runt-time errors and/or unpredictable behaviour.

Be aware that only fields enabled through the paramMask specified as second parameter will be
updated, the remaining ones will not be changed. In the paramMask parameter, the rightmost bit
represents the first parameter in fmrtDefineFields(), the one immediately at its left is the second
parameter, and so on. For example, assuming that 5 parameters have been defined through
fmrtDefineFields(), e.g.:

fmrtDefineFields(tableId,5, “param1”,..,”param2”,..,”param5”,..)

and that we want to update only parameters param1, param2 and param5, we would set
paramMask as follows:

paramMask = 19 → binary 10011

fmrtCreateModify()

Function Prototype
fmrtResult fmrtCreateModify (fmrtId tableId, fmrtParamMask paramMask, ...)

Parameters
This call is quite similar to fmrtModify(), with the notable difference that it either modifies a table
entry (if already present) or insert it as a new entry otherwise. It has a variable number of
arguments. The first three parameters (mandatory) are respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- paramMask (type fmrtParamMask)
It is a bitwise mask that is used to identify the parameters to be changed (in case update of
an existing entry). See Description below for further details about parameter’s usage and
meaning. This parameter is meaningless in case of insertion of new entry.

- key (type previously specified through fmrtDefineKey())
Contains the key value of the entry which shall be modified. It shall be of the same type
defined by the fmrtDefineKey() call. The library behaviour is undefined if this constraint is
not satisfied. In case of string key, the length will be truncated to the max length specified
at key definition through fmrtDefineKey()).

After those mandatory parameters, there is a list of arguments used to set field values of the entry
that is going to be inserted/modified. Parameters are ordered according to the same order used in
definition (i.e. in fmrtDefineFields() library call). Be aware that parameters number and types shall
be correct, otherwise the call may cause run-time errors.
In any case, all parameters shall be included in the call. In case of update of an existing entry, the
only fields that will be updated are those pointed by the paramMask, as explained below. If the
specified key is not present in the table, a new entry will be added. In this case, all parameters
passed as arguments will be used to set values of the new entry’s fields, independently from the
paramMask.
As usual, in case of string parameters, the length will be truncated to the max length specified at
field definition through fmrtDefineFields().

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The entry has been correctly inserted or updated into the table

- FMRTKO
Result obtained when this is the first library call invoked by the caller

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTOUTOFMEMORY
The entry has not been inserted since the table is full.

Description
This library call is used to update an existing entry into the table whose identifier is specified as
first parameter (tableId). Differently from fmrtModify(), it does not provide an error in case of

entry not found into the table, rather it inserts a new entry by setting all field values
independently from the paramMask specified as second argument.

All fields shall be specified into the call, paying attention that number and type of the
corresponding parameters shall fit the definition given through fmrtDefineFields(), in order to
avoid runt-time errors and/or unpredictable behaviour.

Be aware that, in case of update of an existing entry, only fields enabled through the paramMask
specified as second parameter will be changed, the remaining ones will not be affected. In the
paramMask parameter, the rightmost bit represents the first parameter in fmrtDefineFields(), the
one immediately at its left is the second parameter, and so on. For example, assuming that 5
parameters have been defined through fmrtDefineFields(), e.g.:

fmrtDefineFields(tableId,5, param1,..,param2,..param5)

and that we want to update only parameters param1, param2 and param5, we would set
paramMask as follows:

paramMask = 19 → binary 10011

In case of insertion of a new entry, the paramMask will be ignored and all fields will be set
according to parameters passed as arguments.

fmrtDelete()

Function Prototype
fmrtResult fmrtDelete (fmrtId tableId, ...)

Parameters
This call has two parameters (mandatory), which are respectively:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- key (type previously specified through fmrtDefineKey())
Contains the key value to be deleted from the table. It shall be of the same type defined by
the fmrtDefineKey() call. The library behaviour is undefined if this constraint is not
satisfied. In case of string key, the length will be truncated to the max length specified at
key definition through fmrtDefineKey()).

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The entry has been found and successfully deleted from the table.

- FMRTNOTFOUND
The entry with the given key is not present in the table

- FMRTKO
Result obtained when this is the first library call invoked by the caller

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

Description
This library call is used to delete an entry from the table. It requires as input parameters the
tableId and the searched key. If the key is present, the corresponding entry is deleted from the
table. Otherwise, a proper error code is returned.

fmrtImportTableCsv()

Function Prototype
fmrtResult fmrtImportTableCsv (fmrtId tableId, FILE *filePtr, char
separator, int *lines)

Parameters
This call has the following parameters:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- filePtr (type FILE *)
It is a pointer to a file, which shall be opened in read mode by the caller before invoking
this call. It cannot be NULL, otherwise an error will be provided.

- separator (char)
It is a char specified by the caller that is recognized as a separator between consecutive
fields into the input CSV file.

- lines (int *)
It is a pointer to an integer parameter that is provided back to the caller. It contains either
the total number of lines read from the input CSV file (in case of successful outcome) or the
line number affected by the error (in case of error).

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The table has been successfully imported from the input CSV file. In this case, the last
parameter is set to the total number of lines read from the file

- FMRTKO
This is the result obtained when this is the first library call invoked by the caller or when
the specified file pointer is NULL. In those cases, the last parameter provides 0.
This result code is also obtained when an error is detected while reading input lines from
the file (e.g. incomplete line); in such cases the last parameter reports the line where the
error has been detected. Elements read from the file up to the wrong line are inserted into
the table.

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTOUTOFMEMORY
The maximum number of elements has been reached while inserting data into the table
from the input CSV file (the maximum number of elements is specified at table definition
as a parameter of fmrtDefineTable()). The last parameter identifies the line in the input file
where data import was stopped.

Description
This library call is used to import the content of a given file in CSV format (specified by the file
pointer given by the second parameter) into the table whose id is provided by the first parameter.
The separator used by the input file is specified by the third parameter.

Please note that the file shall be opened before calling this function, otherwise a run-time error
will occur.

Similarly, the function call does not close the input file, which must be closed by the caller.

Data read from the file are appended to existing data in the table (if the input table is not empty).

In case of duplicate key, the existing entry is overwritten: no errors are provided in this case.

Please, be aware that the time needed to import a CSV file depends on several factors: number of
elements in the file, length of the input lines and their order.
Concerning the number of elements, this is quite intuitive: the greater the number of input lines,
the longer the time needed to import them. Please be aware that on the average, the import time
increases more than linearly with the number of elements.
Moreover, a file of 100,000 rows made up by 3-4 numeric fields is loaded definitely faster than a
file made by the same number of rows, each one consisting of several (quite) long strings.
Finally, even elements ordering matters. The worst case occurs when elements in the input file are
correctly ordered (either in ascending or in descending order). In fact, in this case the internal data
structures shall be properly re-organized upon each insertion (i.e. the internal binary tree shall be
properly rebalanced). The fmrtExportTableCsv() function described below provides the possibility
to export data according to an optimized order, that can be reloaded through
fmrtImportTableCsv() without the need for rebalancing, with a decrease of the reload time
around 10%.

fmrtExportTableCsv()

Function Prototype
fmrtResult fmrtExportTableCsv (fmrtId tableId, FILE *filePtr, char
separator, uint8_t selectedOrder)

Parameters
This call has the following parameters:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- filePtr (type FILE *)
It is a pointer to a file, which shall be opened in write (or append) mode by the caller
before invoking this call. If NULL, the output is written on stdout.

- separator (char)
It is a char specified by the caller that is used to separate fields into the output.

- selectedOrder (uint8_t)
This parameter can assume one of the following values: FMRTASCENDING, to export data
in ascending order with respect to the key, FMRTDESCENDING to use descending order,
and FMRTOPTIMIZED to export data using an order optimized to speed up data reload
through fmrtImportTableCsv(). If an unrecognized value is specified, by default the call will
export data assuming FMRTOPTIMIZED.

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The table has been successfully exported to the output CSV file.

- FMRTKO
This is the result obtained when this is the first library call invoked by the caller.

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

- FMRTOUTOFMEMORY
There is not enough memory available in the system to allow the allocation of internal data
structures needed to export data according to FMRTOPTIMIZED ordering.

Description
This library call is used to export the content of a table (whose tableId is specified as first
parameter) into a given file in CSV format (pointed by the file pointer given by the second
parameter). The separator used to separate fields in the output file is specified by the third
parameter. The fourth parameter is used to specify the desired data export ordering.

Please note that the file shall be opened before calling this function, otherwise a run-time error
will occur.

Similarly, the function call does not close the output file, which must be closed by the caller.

fmrtExportRangeCsv()

Function Prototype
fmrtResult fmrtExportRangeCsv (fmrtId tableId, FILE *filePtr, char
separator, uint8_t selectedOrder, ...)

Parameters
This call has the following parameters:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

- filePtr (type FILE *)
It is a pointer to a file, which shall be opened in write (or append) mode by the caller
before invoking this call. If NULL, the output is written on stdout.

- separator (char)
It is a char specified by the caller that is used to separate fields into the output.

- selectedOrder (uint8_t)
This parameter can assume one of the following values: FMRTASCENDING, to export data
in ascending order with respect to the key or FMRTDESCENDING to use descending order.
Differently from fmrtExportTableCsv(), FMRTOPTIMIZED is not supported. If an
unrecognized value is specified, by default the call will export data assuming
FMRTASCENDING.

- keyMin (type previously specified through fmrtDefineKey())
It contains the minimum key value that delimits the lower bound of the export interval. It
shall be of the same type defined by the fmrtDefineKey() call. The library behaviour is
undefined if this constraint is not satisfied. In case of string key, the length will be
truncated to the max length specified at key definition through fmrtDefineKey()).

- keyMax (type previously specified through fmrtDefineKey())
It contains the maximum key value that delimits the upper bound of the export interval. It
shall be of the same type defined by the fmrtDefineKey() call. The library behaviour is
undefined if this constraint is not satisfied. In case of string key, the length will be
truncated to the max length specified at key definition through fmrtDefineKey()).

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
The table has been successfully exported to the output CSV file.

- FMRTKO
This is the result obtained when this is the first library call invoked by the caller.

- FMRTIDNOTFOUND
tableId does not represent a valid table (i.e. a table previously defined by
fmrtDefineTable())

Description
This library call is used to export partially the content of a table (whose tableId is specified as first
parameter) into a given file in CSV format (pointed by the file pointer given by the second
parameter). The separator used to separate fields in the output file is specified by the third
parameter. Only the entries with key in the interval between keyMin and keyMax are exported.

Please note that the file shall be opened before calling this function, otherwise a run-time error
will occur.

Similarly, the function call does not close the output file, which must be closed by the caller.

fmrtCountEntries()

Function Prototype
fmrtIndex fmrtCountEntries(fmrtId tableId)

Parameters
This call has just one input parameter:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

Return Value
The library call provides the number of elements stored into the table, or FMRTNULLPTR in case of
any error (e.g. table not defined).

Description
See above.

fmrtGetMemoryFootPrint()

Function Prototype
long fmrtGetMemoryFootPrint(fmrtId tableId)

Parameters
This call has just one input parameter:

- tableId (type fmrtId)
It’s the unique identifier of the table between 0 and 255 specified at table definition
(fmrtDefineTable()).

Return Value
The library call provides the memory occupancy of the table expressed in bytes, or 0 in case of any
problem (e.g. table not defined).

Description
See above.

fmrtDefineTimeFormat()

Function Prototype
fmrtResult fmrtDefineTimeFormat(char * fmrtFormat)

Parameters
This call takes just one input parameter:

- fmrtFormat (type char *)
This is a string representing the desired time format, according to the same convention
specified by strftime() man page (e.g. "%c" for full date and time, "%T" for time in
HH:MM:YY format, "%F" for date in the format YYYY-MM-DD, etc.).
In case the parameter is either NULL or an empty string, then time format is set to raw (i.e.
timestamps are represented as raw time_t data)

Return Value
The library call provides one of the following fmrtResult values:

- FMRTOK
Time format correctly defined and set.

- FMRTKO
Time format not accepted (e.g. due to wrong fmrtFormat parameter).

Description
This library call allows to change timestamp representation of FMRTTIMEFORMAT data handled
by the library.

Please observe that the library manages timestamps internally using always the Linux
representation (i.e. seconds from Epoch, Jan 1st 1970, 00:00:00 UTC), however it allows changing
the format used to display and enter FMRTTIMEFORMAT data. When a format is specified, then
timestamp keys and fields in fmrtRead(), fmrtCreate(), etc. must be expressed as character strings
with the corresponding format (e.g. "Mon Jun 21 17:08:55 2021").

The library allows also the usage of raw time format; in that case, timestamp keys and fields in
fmrtXxxx() routines must be defined as time_t data.

This routine is OPTIONAL. If not called, default time format will be set to "%c", i.e. current locale.

The routine can be called as many times as desired. This will not affect internal data
representation, but only data management and display (e.g. the format of timestamp data in CSV
output files).

Finally, observe that timestamp format is GLOBAL, i.e. it is a configuration that affects all tables.

fmrtEncodeTimeStamp()

Function Prototype
time_t fmrtEncodeTimeStamp(char * timeStamp)

Parameters
This call takes just one input parameter:

- timeStamp (type char *)
Input string that represents a time stamp. It shall be formatted according to the timestamp
format defined through fmrtDefineTimeFormat().

Return Value
This function provides the timestamp encoded as a time_t data or 0 in case of errors.

Description
This library call takes an input string representing a time stamp, properly expressed according to
the configured format, and provides back the corresponding value encoded as a time_t (Linux
time).

fmrtDecodeTimeStamp()

Function Prototype
void fmrtDecodeTimeStamp(time_t rawTimeStamp, char * formattedTimeStamp)

Parameters
This call takes two input parameters:

- rawTimeStamp (type time_t)
Input value of the time stamp expressed as raw data (i.e. according to Linux time_t type).

- formattedTimeStamp (type char *)
Output string that contains the timestamp formatted according to the format defined
through fmrtDefineTimeFormat().

Return Value
This function does not have return values. On return, it provides in the second parameter the
timestamp properly formatted.

Description
This library call takes a raw time stamp (i.e. a time_t data) as first parameter and provides back in
the second parameter a string formatted according to the timestamp format defined through
fmrtDefineTimeFormat().

The string must be allocated before calling this function

Examples
The ./examples subdirectory in the libfmrt package contains several examples that make use of
the library for different purposes. To use them, it is assumed that libraries are correctly installed
into /usr/local/lib and that this path is either configured in /etc/ld.so.conf or in environment
variable $LD_LIBRARY_PATH.

To compile a specific example file (let's say DictionaryWords.c), simply type the following
commands from the ./examples/src subdirectory:

gcc -g -c -O2 -Wall -v -I../../headers DictionaryWords.c
gcc -g -o ../bin/DictionaryWords DictionaryWords.o -lfmrt

(for shared library linking) or:

gcc ./DictionaryWords.c -I../../headers -L../../lib -o ../bin/
DictionaryWords -lfmrt

However, the examples can be compiled all at once by typing either:

make static

or

make shared

Both commands above shall be issued from the ./example subdirectory, and will produce
executables in the ./examples/bin subdirectory; specifically, the former will produce executables
linked statically with the libfmrt library, while the latter will provide executables linked
dynamically.

The following command clears all executables:

make clean

The ./examples/data subdirectory contains some sample data useful to run examples.

The following sub-section provides a detailed description of all the examples provided with the
library.

DictionaryWords
This example (./examples/src/DictionaryWords.c) defines a single table, called
“DictionaryWords” of 80,000 words defined as 32-char strings. The word represents the key, and
no additional fields are defined in the table.

When launched, the application prompts the following menu:

* Available choices *

 Menu

 (1) - Import words from file
 (2) - Search a word
 (3) - Insert a word in the table
 (4) - Delete a word from the table
 (5) - Count words
 (6) - Export all words to file in ascending order
 (7) - Export all words to file in optimized order
 (8) - Export range of words in ascending order
 (0) - Exit

 Enter the selected choice:

The choices are straightforward, there is no need to provide further explanations. Words can be
read from an input file (at the purpose, directory ./examples/data/dict contains a list of about
60,000 Italian words). After that, they can be searched, deleted, inserted or exported to a file.
The source code illustrates the usage of several libfmrt calls.

CountWordsOccurrence
The example application ./examples/src/CountWordsOccurrence.c uses a single table, called
“WordCount” of 120,000 elements, with a key constituted by a 32-char string (“Word”) and a
single integer field called “Frequency”.

When launched, the application prompts the following menu:

* Available choices *

 Menu

 (1) - Count words from txt file
 (2) - Search a word and print number of occurrences
 (3) - Count distinct words
 (4) - Export all words to file in ascending order
 (5) - Export all words to file in optimized order
 (6) - Export range of words in ascending order
 (7) - Display Memory Footprint
 (0) - Exit

 Enter the selected choice:

Basically, the example application is able to scan an input text file and to count word occurrences.
Words are identified by means of strtok() standard C function call. This is not completely correct;
the algorithm should be refined a bit to isolate words in the correct way. In fact, this version
recognizes things like “1234” or “[[“ as words; moreover, it is case sensitive, therefore “of” and
“Of” appear as distinct words. Nevertheless, I have decided not to spend too much time on
refining this algorithm, since the purpose is just to illustrate the usage of libfmrt call, not to
produce a sophisticated parser.

The ./examples/data/books directory contains some English books formatted as text files1 that
can be used with option (1) for testing purposes:

I'm going to import and count words from an input txt file...
Please insert file name: ../data/books/Ivanhoe_Walter_Scott.txt
Finished reading txt file... 21560 lines read in 20 seconds

 Press the ENTER key to continue.

The remaining choices allow to search for a word and count the number of occurrences, to count
the total number of distinct words, to export the table in CSV format, etc.:

1 All English books have been downloaded from https://www.gutenberg.org/

https://www.gutenberg.org/

Enter word to search:
 Word? of
Operation Succeeded
Word of is present and occurs 8147 times

 Press the ENTER key to continue...

The table contains 17048 distinct words

 Press the ENTER key to continue...

Option (7) provides the memory occupancy of the table. Given 120,000 elements made up by a
32-char string and a 4-byte unsigned integer, the memory footprint is about 5Mbytes:

The whole table occupies 5400480 bytes in the internal memory ...

 Press the ENTER key to continue...

Televoting
This sample program (./examples/src/Televoting.c) simulates televoting operations. When
launched, it starts several threads, each one simulating the reception of a great number of
preferences from random generated phone numbers. The number of concurrent threads, as well
as the number of random votes generated per thread, are selected by the operator when the
program is started:

This program launches several threads, each one simulating the reception
of a number of televotes from random generated telephone numbers.
Data are collected into a table (Votes), while events (e.g. duplicated
votes) are stored into another table (LoggedEvents).

Enter the number of threads (1-4)? 4
Enter the number of votes per thread (1-300000)? 25000

 Press the ENTER key to continue...

When ENTER is pressed, the program instantiates the specified number of threads:

Televoting in progress...

Thread (id cec44700) started (simulating 25000 votes)...
Thread (id d0447700) started (simulating 25000 votes)...
Thread (id cfc46700) started (simulating 25000 votes)...
Thread (id cf445700) started (simulating 25000 votes)...

Each thread contains a loop that generates random votes (between 1 and 20) for random
generated telephone numbers (in the form +39301xxxxxx). The votes are collected into a table,
called Votes, where the phone number constitutes the key and the expressed preference is the
only attribute. Votes has a dimension of 1,000,000 elements.

In case of multiple votes from the same number, insertion into Votes table fails (remember that
fmrtCreate() operation provides an error when the key is already present in the table). If this
happens, an event is logged into another table (LoggedEvents), where the key is represented by
the current timestamp and the only field is a string that reports the collision. LoggedEvents table
has a maximum dimension of 500,000 elements.

As soon as the running threads complete their execution, a message is displayed by the program:

Thread (id cec44700) completed
Thread (id cfc46700) completed
Thread (id cf445700) completed
Thread (id d0447700) completed

Televoting operations ended... elapsed time 878 seconds

 Press the ENTER key to continue...

Pressing ENTER the following menu is displayed:

* Available choices *

 Menu

 (1) - Display Number of Elements, Size and Memory Footprint of Tables
 (2) - Search and Print Vote Expressed by Input Phone Number
 (3) - Export Preferences to File
 (4) - Export Events to File
 (0) - Exit

 Enter the selected choice:

Options are quite straightforward. Choices (2) allows to search for a given number and to see the
corresponding vote (if any):

Enter phone number to search (e.g. +39301123456)? +39301051465
Operation Succeeded
Phone Number +39301051465 expressed the following vote: 9

 Press the ENTER key to continue...

Options (3) and (4) allows to export respectively the Votes and the LoggedEvents tables. The
obtained files appear as follows:

#Table: Votes (Id: 4)
#PhoneNo,Preference
+39301000023,19
+39301000024,16
+39301000032,13
+39301000064,4
+39301000085,1
+39301000096,5
+39301000108,6
+39301000117,12
…
…
+39301468783,11
+39301468791,11
+39301468813,17
+39301468814,15
+39301468820,19
+39301468825,11
…
…

#Table: LoggedEvents (Id: 12)
#TimeStamp,Event
Thu Jun 9 14:58:32 2022,Multiple Occurrences of repeated votes
Thu Jun 9 14:58:33 2022,Multiple Occurrences of repeated votes
Thu Jun 9 14:58:34 2022,Multiple Occurrences of repeated votes
Thu Jun 9 14:58:35 2022,Multiple Occurrences of repeated votes
Thu Jun 9 14:58:36 2022,Multiple Occurrences of repeated votes
Thu Jun 9 14:58:37 2022,Multiple Occurrences of repeated votes
…
…
Thu Jun 9 15:07:47 2022,Multiple Occurrences of repeated votes

Thu Jun 9 15:07:48 2022,+39301956366 attempted to vote again
Thu Jun 9 15:07:49 2022,Multiple Occurrences of repeated votes
Thu Jun 9 15:07:50 2022,Multiple Occurrences of repeated votes
Thu Jun 9 15:07:51 2022,Multiple Occurrences of repeated votes
Thu Jun 9 15:07:52 2022,Multiple Occurrences of repeated votes
Thu Jun 9 15:07:53 2022,+39301225709 attempted to vote again
Thu Jun 9 15:07:54 2022,Multiple Occurrences of repeated votes
…

Finally, option (1) displays some useful information about the two managed tables: maximum
number of elements, current number of elements and memory occupancy:

Table Votes:
 Table Id: 4
 Table Size: 1000000
 Number of Votes: 95277
 Memory Size (KB): 27344.24

Table LoggedEvents:
 Table Id: 12
 Table Size: 500000
 Number of Events: 869
 Memory Size (KB): 31738.77

 Press the ENTER key to continue...

This example illustrates the usage of several libfmrt functions (including the usage of timestamps
as table key) and shows also concurrent access to tables from different threads.

BarCodeCache
This example is located in ./examples/src/BarCodeCache.c. It implements a memory cache that
stores a set of barcodes (constituted by a 13-char fixed length string), along with a couple of
associated attributes, representing respectively the size (24-char string) and the description (48-
char string) of the associated product.

It uses a single table, called “BarCodes”, of 1,300,000 elements.

At startup, the following menu appears:

* Available choices *

 Menu

 (1) - Import barcodes from CSV input file
 (2) - Search and Print Barcode
 (3) - Insert a new Barcode in the table
 (4) - Remove Barcode from the table
 (5) - Count Barcodes
 (6) - Export all Barcodes to file in optimized order
 (7) - Export range of Barcodes in ascending order
 (8) - Display Memory Footprint
 (0) - Exit

 Enter the selected choice:

Option (1) can be used to read data from a CSV file. The ../data/largeDatasets subdirectory
contains several example CSV files, of various sizes. Be aware that the time needed to load them
increases more than linearly with respect to the number of elements. As an example, 1,000
elements are read almost instantaneously, 10,000 elements are read with a rate of about 1000
items/s, 100,000 elements are read with a rate of about 150 item/s, and so on. Ref. 1 in chapter
References provides the rationale behind this behaviour: specifically, when elements are inserted
in the right order, every insertion requires tree rebalancing. First elements are inserted very
efficiently, but as the table grows, the rebalancing operation becomes more and more time
consuming. Practically speaking, insertion begins very quickly, but it tends to slow down as the
table fills up.

This is the output shown on the screen after selecting option (1) and providing a sample CSV file:

I'm going to import barcodes from an input file...
Please insert file name: ../data/largeDatasets/items_100K.csv
Finished reading input CSV file... 99981 lines read in 629 seconds

Operation Succeeded
Read 99981 lines from input file

 Press the ENTER key to continue...

The remaining choices allows to search, create or delete an input barcode (options (2), (3) and (4)),
to count the number of elements (option (5)), to export data to a CSV file, using respectively the

ascending order (FMRTASCENDING, option (6)) or the optimized order (FMRTOPTIMIZED, option
(7)) and, finally, to display the memory occupancy of the table (option (8)). The following pictures
depicts the output obtained selecting options (2), (5) and (8) respectively:

13-char barcode to search? 3254560083622
Operation Succeeded
Barcode: 3254560083622 -> Size/Format: 250g | Description: Auchan Pur Arabica
Cafe Moulu

 Press the ENTER key to continue...

The table contains 99981 items

 Press the ENTER key to continue...

The whole table occupies 124800504 bytes in the internal memory ...

 Press the ENTER key to continue...

Despite the relevant table size (1,300,000 elements, each containing 3 string parameters for a
total length of 13+24+48=85 characters), the memory occupancy is “only” 120Mbytes of internal
memory.

Finally, in the following we provide an excerpt of the output CSV file obtained through option (6):

#Table: BarCodes (Id: 1)
#BarCode,Size/Format,Description
0880761618634,750 ml,CIROC LUXURY VODKA
0880761618702,1000 ml,CIROC LUXURY VODKA
0880761626240,750 ml,J W PURE MALT LGREEN LABELA
0880761626486,1750 ml,CIROC SNAP FROST VODKA
...
...
4937105059052,8.5 oz,Yuko System phiten repair treatment
4937182002248,117mm x 60mm - 185g,Avox Lighting - IL60-7.5w/760 (540lm) Natural
Sunlight LED - (100~240v)
4937182002255,117mmx60mm - 185g,Avox Lighting - 7.5w(460lm) Cool White LED -
(100~240v)
4937518227734,60 CAPSULES,3 SUPER SLIM BOMB
...
...

Known Issues and Future Improvements
This version of the libfmrt library is quite stable and is self-consistent enough to be released as a
finished product. However, there are aspects that will certainly be the subject of improvement in
future versions. This section provides a brief overview of the main issues that will be addressed in
future releases.

- libfmrt v.1.0.0 provides one library call for search operations (fmrtRead()), which basically
allows only exact search of a given key. It does neither support search criteria other than
equality, nor the usage of wildcards on string fields;

- this library version does not support search operation on fields other than the key;

- the library calls used to define the table structure (e.g. fmrtDefineFields()) and to read and
write data (fmrtRead(), fmrtCreate(), etc.) are thought for applications in which the table
structure is hardcoded in the application itself. However, imagine that an application needs
to handle tables with structure defined at run time. With the current interface, this is
simply impossible, since table structures (i.e. number, name and type of fields) shall be
specified at coding time. To achieve this flexibility, a new interface with some new library
calls shall be properly introduced.

- this version does not provide an efficient and safe way to save data on persistent storage.
Indeed, it offers the possibility to save tables as CSV files (fmrtExportTableCsv()), but this
might not be enough in some cases, at least for two reasons. First, data reload from a CSV
input file is not particularly efficient (on lower-end hardware it might take hours for tables
composed of some millions of elements); second, data exported in this way are easily
readable by humans, and sometimes this might introduce confidentiality issues. Future
versions of the library will be enhanced by introducing table binary dumps, able to address
both observations above.

References
1. Introduction to AVL Trees, available at https://www.roberto-mameli.it/wp-

content/uploads/2022/04/Tutorial_AVL_Trees.pdf

